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Abstract 

YBa2Cu,0X compounds exist in tetragonal and orthorhombic structures. The transition between these structures 
is a ferroelastic order-disorder phase transformation, caused by a spatial redistribution of the 0 atoms in the 
Cu(1) atomic plane. The diffusive jumps of the 0, which lead to such a redistribution, induce an anelastic 
relaxation process. We show that this relaxation process exhibits, in the neighborhood of the tetragonal-orthorhombic 
phase transformation, a very large increase of both the relaxation strength and the relaxation time (critical slowing 
down), where the temperature behavior of both quantities is approximately described by a Curie-Weiss law. We 
discuss finally elastic aftereffect measurements on sintered YBa,C&O, samples which demonstrate the distinct 
influence of the tetragonai-orthorhombic phase transformation on the relaxation strength and relaxation time. 

1. Introduction 

Depending on temperature and 0 concentration x, 
YBa,Cu30, compounds exist in tetragonal and ortho- 
rhombic phases that reflect different states of order of 
the 0 in the Cu(1) atomic plane [l-5]. Figure 1 presents 
schematic views of this plane for both the tetragonal 
and orthorhombic phases. In this plane, the 0 atoms 
occupy sites between two Cu atoms where, however, 
only a fraction c = (x - 6)/2 of all the available sites is 
actually populated (c ~0.5 because of XG 7). We can 
distinguish two types of 0 sites, sites of type 1 where 
the two nearest neighbor Cu atoms are in thex-direction, 
and sites of type 2 where the neighboring Cu atoms 
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Fig. 1. Schematic view of a Cu(1) atomic plane in YBa2Cu,0, 
for the tetragonal and orthorhombic lattice structure [l]. For 
the orthorhombic structure, the figure shows a preferential oc- 
cupation of 0 sites with nearest Cu neighbors in the y-direction 
together with the resulting orthorhombic lattice distortion (the 
size of the lattice distortion is larger than in reality). 
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are in the y-direction. In the tetragonal phase, both 
types of sites are occupied with the same probability 
c, whereas one of the two types of sites is occupied 
with higher probability in the orthorhombic structure. 
The orthorhombic structure in Fig. 1, for instance, 
shows a preferential occupation of sites of type 2. 

The orthorhombic lattice distortion results from the 
higher population of the 0 sites of one type. The 
distortion can be described by the strain [6]: 

where c, is the occupation probability of the sites of 
type v or, identically, the number of 0 atoms per unit 
cell, located on sites of type v (the overall occupation 
probability c= (7-x)/2 of the sites of both types is 
c = (c, + ~$2). The tensor A$‘) characterizes the lattice 
strain caused by 0 atoms on sites of type v. The non- 
zero components of Ap) are A(‘) = A(‘) = A, and A(‘) = 
AZ) = AZ, where structural data fox; the ?Ba,Cu,O, syzem 

yield A1 - A2=0.019 [2, 71. This and the relation 
c1 -c = - (c, -c) yields the two final terms of eqn. (1) 
which demonstrate that the only non-zero components 
of the orthorhombic strain are E= and Ed = - Ed. 

The transition between the tetragonal and the or- 
thorhombic structure is a ferroelastic order-disorder 
phase transformation. The order parameter is propor- 
tional either to the orthorhombic strain E, or to the 
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population difference ca -c .  The ferroelastic behavior 
of the transformation follows from the fact that the 
transition is continuous (or of second order), at least 
above 440 °C [2]. Deviations from a continuous phase 
transformation might exist in a limited temperature 
range around 200 °C, as predicted from theoretical 
model calculations performed with three parameters 
for the short-range pair-interaction energy between an 
O atom and its first, second and third O neighbor, 
respectively [5]. However, the calculations did not con- 
sider the long-range elastic interaction between the O 
atoms, which contributes ~ 10% to the total interaction 
energy that leads to the phase transformation [8] and 
may favor a continuous transformation behavior. The 
low jump rates of the O [9, 10] make it finally difficult 
to establish true equilibrium conditions in YBa2Cu30~ 
samples so that reliable experimental data on the nature 
of the phase transformation at and below ~ 200 °C do 
presently not exist (this holds also for the phase boundary 
between the various orthorhombic phases with their 
different O superstructures) [2]. 

This paper discusses the influence of the ferroelastic 
tetragonal-orthorhombic phase transformation in 
YBa2Cu30, on anelastic experiments. We shall see that 
anelastic experiments in the neighborhood of the phase 
transformation exhibit (i) an extremely large (in fact, 
diverging) relaxation strength, approximately describ- 
able by a Curie-Weiss law, and (ii) a decrease of the 
relaxation rate, known as critical slowing down [11]. 
In Section 2, both of these effects will be discussed 
within a mean-field approximation for the phase trans- 
formation. We apply this simple approximation since 
it demonstrates the basic characteristics of the anelastic 
relaxation, although it will not yield sophisticated details 
of the phase transformation itself such as the occurrence 
of the O superstructures in the various orthorhombic 
phases. In Section 3, we report experimental results 
which evidence both the large relaxation strength and 
the critical slowing down in the neighborhood of the 
phase transformation. 

The presence of external stresses tr, k modifies eqn. 
(2), which now reads (Einstein's summation convention) 
[61 

c, 73-Vo. c, T)-vo. (3) 
where Vo-- 175/~3 [1, 2] is the volume of an YBa2Cu30~ 
unit cell. The occupation probabilities c'1 and c'2 in 
eqn. (3) differ from the equilibrium values Cl and c2 
in eqn. (2) because of the stresses trk~. For smallvariations 
c'~ - Cl = - (c'2 - Cz), these variations are obtained from 
a linear expansion of the chemical potentials in eqn. 
(3), leading to 

A<2,, c r ~{o/z,  o , ~  
c ' l -c1=Vo'(A~P - kZ," k , /~OC ' + 0c2] (4) 

The stress-induced variation c '~-  c~ describes the ane- 
lastic strain e}] ) according to eqn. (1). This allows the 
determination of the relaxations Asim of the elastic 
compliance, defined by e}] ) = ~Sijk~crk~. The result for the 
relaxations is 

~S i j k l=Vo ' (~ (1 ) - -~ (2 ) ] ' [~ (1 ) - - l~ (~ ) ) / (  0"1 "~- (5) 
\--ij °ij .' \"'hi / k ~C I ~C2 / 

From the fact that the only non-zero components of 
A~ ) are .,~°).~ = A~)= A~ and ~)_-,,~(2)__ ,,2, ~ the only non- 
zero relaxations of the elastic compliances are found 
to be ~Sl~, as22 and As~2 (Voigt's notation [12]). These 
relaxations can be written as: 

LhLS1, = ~S22 = -  L~S12 = VO. (/~1_/~2)2/{ ~U'I 0/'/'2 ~ + (6) 

Note that there are in total six or nine independent 
elastic compliances for the tetragonal (P4/mmm [1]) 
and orthorhombic structure, respectively [6, 12]. 

A quantitative calculation of the relaxation of the 
elastic compliances according to eqn. (6) requires the 
knowledge of 0/~/0cv for both types of O atoms. Within 
a mean-field (or Bragg-Williams) approximation for 
the tetragonal-orthorhombic phase transformation, the 
chemical potentials /.Lv can be written as [13, 14] 

2. Theoretical background 

For the subsequent discussion, we distinguish between 
O atoms of type 1 or 2, populating sites of type 1 or 
2, respectively. This means, for instance, that a diffusive 
jump of an O atom from a site of type 1 to a site of 
type 2 corresponds to a chemical reaction that transforms 
an O atom of type 1 in an O atom of type 2. In this 
case, thermodynamic equilibrium requires in the absence 
of external stresses: 

/.~LI(Cl, C, T)=  1d,2(c2, c, T) (2) 

where/zv(cv, c, T) is the chemical potential of O atoms 
of type v. 

C v 
= kB T .  In - (¢v - c )  (7 )  

where kB T is the thermal energy. In eqn. (7) -kB-In{G/ 
(1-cv)} is the partial entropy of O atoms of type v 
occupying their sites without any interaction except for 
the fact that a given site can be occupied only once. 
The term with factor a describes the difference in the 
(partial) energies of the O atoms of type 1 and type 
2, caused by an interaction between O atoms of different 
type and favoring energetically a preferential occupation 
of one of the two types of sites (this term is responsible 
for the phase transformation). The condition /zl =/z2 
leads to the equation 
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c,'(1-c2) [2ot" (cl- c).} 
c2.(1-c1) =expt  k- -~  (8) 

from which the equilibrium occupation probabilities c~ 
and c2 = 2c-c1 can be calculated according to standard 
procedures [13, 14]. The calculation yields c~=c2=c 
for temperatures above a critical temperature 

Tc = ac. (1 - c)/ka (9) 

so that the system is tetragonal above T,. Below T¢, 
on the other hand, the occupation probabilities c1 and 
c2 differ from c, so that the system is in its orthorhombic 
phase. Figure 2 presents, for the example c = 0.25 (which 
corresponds to x--6.5), the difference q - c  in a plot 
vs. TITs, as calculated according to eqn. (8) (it was 
already mentioned that c l - c  is proportional to the 
order parameter). 

The critical temperature T¢ depends on c and, there- 
fore, on the O concentration x. The concentration 
dependence, as expressed by eqn. (9), describes es- 
sentially correctly the experimentally determined phase 
boundary between the tetragonal and the orthorhombic 
structure (the maximum Tc exists for c=0.5, or for 
x=7)  [15-17]. From T,=400 °C forx=6.5 [15-17], the 
parameter a can be estimated to be a=0.18 eV. 

From the above expression for/zv and with eqn. (9) 
for T,, the relaxations of the elastic compliances in 
eqn. (6) can be written in the general form 

c-(1 -c)-Vo. (A1- A2) 2 
Ash = As22 = - As12 = F1" (10) 

2kBT 

where factor F 1 is given by 

/ I T  . ( c ( 1 - c )  c ( 1 - c )  ) ] 
F , = T  k q ( 1 - c , )  + c2(1----~-2) - T ,  (11) 
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Fig. 2. The magnitude of the difference c t - c  (left-hand scale) 
and the factors Ft and F2 (right-hand scale) in a plot vs. T/Tc. 
The broken line shows the value F I = F 2 = I  found for a = 0  or 
c---, 0 (i.e. in the absence of the phase transformation). The data 
are valid for c = 0.25, which corresponds to an O concentration 
x=6.5.  For more details, see the text. 

For a discussion of the results in eqns. (10) and (11), 
we consider first temperatures above To. This case 
implies c1=c2=c, so that F1 can be written as F~=T/ 
(T-To). We find, accordingly, a Curie-Weiss law for 
the relaxations of the elastic compliances, demonstrating 
a ferroelastic behavior of the phase transition which 
causes extremely large relaxations closely above To. We 
find further F1 = 1 in the absence of the phase trans- 
formation (i.e. for a =  0 or for c << 1, since both cases 
lead to To---)0). In this case, the relaxations of the 
elastic compliances in eqn. (10) become identical to 
standard literature results [6]. 

For temperatures below T¢, a calculation of the 
relaxations of the elastic compliances according to eqns. 
(10) and (11) requires first a determination of the 
equilibrium values of the occupation probabilities c~ 
and Cz with the help of eqn. (8). The analysis also 
shows that in this case the relaxations become extremely 
large in the neighborhood of the phase transformation. 
To demonstrate this effect in more detail, we present 
in Fig. 2 factor F1 in a plot vs. T/T~, again calculated 
for the concentration c = 0.25. The figure shows clearly 
the large increase of this factor, which determines the 
size of the relaxation, in the neighborhood of the critical 
temperature T¢. 

The above considerations are valid for small stress- 
induced variations of the occupation probabilities cl 
and c2. This restriction is of importance for temperatures 
below T~ since, in this case, sufficiently large stresses 
can induce variations of the occupation probabilities 
which change the sign of c~-c  and, consequently, the 
sign of the orthorhombic lattice distortion (or of the 
order parameter). In fact, the application of stresses 
turned out to be a successful technique in order to 
suppress twinning in YBaECU30, single crystals [18]. It 
is obvious that the present results cannot describe such 
a situation. We mention finally, previous theoretical 
work on the anelastic relaxation in the temperature 
range below Tc [19]. This work used a low-concentration 
approximation in calculating the O distribution between 
the two types of sites, which is certainly not justified 
in the present case, and it did not account for the fact 
that the energy difference between the O atoms on 
sites of types 1 and 2 is a function of the occupation 
probabilities cl and c2 (this functional dependence is 
actually the reason for the phase transformation). It 
is, accordingly, doubtful whether the results are really 
applicable to the YBa2Cu3Ox system. 

The influence of the phase transformation on the 
relaxation time r will be described by the equation 

dc"--Adt = ___~1 .2r(,,=o) C"2(1--C"1)" exp~ k - ~  J 

-C"l(1-c"2) .exp(  a (c" l - c )~ l  (12) 
kBT ]J 
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for the changes of the occupation probabilities c"a and 
c"2 with time t, caused by diffusive jumps of the O 
atoms in the Cu(1) plane (note that dc"a/d t=-dc"z /  
dt). The equation states that dc"l/dt is proportional to 
the expression in the braces, with ~=0)  as a propor- 
tionality constant that later will turn out to be the 
relaxation time for a =  0 or c ~ 0  (i.e. in the absence 
of a phase transformation). The first term of the expres- 
sion in the braces describes the rate of O atoms jumping 
from sites of type 2 to sites of type 1, whereas the 
reverse rate is given by the second term. The first term 
is proportional to the number of O atoms on sites of 
type 2, i.e. to c"z, and to 1-c"a since an O atom can 
only jump to a vacant site. The factor c"1(1-c"2) of 
the second term stands for the analogous relationship 
there. The exponential functions account for the fact 
that the difference in the (partial) energies of the O 
atoms on sites of type 2 and sites of type 1 is 2a(c"a - c), 
as given by the chemical potential in eqn. (7). This 
implies, for reasons of detailed balance, the presence 
of the two exponential functions in eqn. (12). 

For dc"i/dt=O, eqn. (12) describes an equilibrium 
situation. It is readily seen that, in this situation, the 
occupation probabilities c"1 and c"2 in eqn. (12) exhibit 
the same relationship as ca and c2 in eqn. (8). This 
fact shows the internal consistency of the present model 
calculations for relaxation strength and relaxation time. 

For small deviations of c"a from the equilibrium value 
ca (according to eqn. (8)), the relaxation process in 
eqn. (12) can be described by a linear expansion with 
respect to Aca = c"1-  Cl. The expansion yields the result 

dc"a dAcl AC 1 

dt dt ~- 
(13) 

where the relaxation time ~- is given by 

"r=F1" c(1 - c )  • ~'('~=°) =F2. rw=°) (14) 
~/cl c2(1 - cl)(1 -c2) 

Equation 14 shows that the relaxation time ~" becomes 
identical to r <~=°> for a = 0  or c ~ O  (i.e. in the absence 
of the phase transformation). In the general case, 
however, ~" differs from ~.(~=o~ by the factor Fz~  1. 
Considering first the temperature range above To, where 
ca = Cz = c, we find that F2 is identical to Fa. This yields, 
similarly as for the relaxation of the elastic compliances, 
a Curie-Weiss law ~-= ~.(~=o). T/ (T-To)  for the relax- 
ation time, demonstrating the critical slowing down of 
the dynamics of the relaxation process. An analysis for 
temperatures below Tc shows that, in this case, the 
relaxation time ~" is larger than ~.(,,=o) in the neigh- 
borhood of T~, whereas it becomes smaller than ~.(,~=o) 
at lower temperatures. As an example for the tem- 
perature behavior of the relaxation time, we present 
in Fig. 2 the factor F2 in a plot vs. T/Tc, again calculated 

for c=0.25. The figure shows drastically the increase 
of the relaxation time in the neighborhood of the phase 
transformation, and it demonstrates in particular that, 
in this neighborhood, a large relaxation of the elastic 
compliances is correlated with a large increase of the 
relaxation time. We shall see later that this correlation 
is substantiated in our experimental data. 

3. Experimental results 

Results of previous anelastic studies on YBa2Cu3Ox 
samples can be found in recent papers [9, 10, 20-23], 
and in references therein. The studies that were carried 
out in the neighborhood of the tetragonal--orthorhombic 
phase transformation indicate in fact large relaxation 
strengths A, in one particular example as large as A --- 0.75 
[9]. A critical slowing down of the relaxation dynamics, 
on the contrary, has not been discussed in literature 
so far. 

In the following, we present results of (quasistatic) 
elastic aftereffect experiments on two sintered (poly- 
crystall ine) YBa2Cu30  x samples with x = 6.29 and 6.41, 
carried out in the temperature range between 100 and 
150 °C. In this temperature range, both samples were 
close to the tetragonal--orthorhombic phase transfor- 
mation. Literature data for the phase boundary [15, 
16] seem to indicate that the sample with the lower 
or higher x were likely to be in the tetragonal or 
orthorhombic phase, respectively. However, we have 
mentioned already that the nature of the phase trans- 
formation is, in the present temperature range, ex- 
perimentally not really established, a fact which also 
leaves uncertainties with respect to the actual behavior 
of the phase boundaries. 

In our experiments, we determined time-dependent 
deflections of our ~ 0.7 mm thick, ~ 5 mm wide and 
~ 45 mm long YBa2Cu3Ox samples. The investigated 
sample was fixed at one end in a clamp, and the 
movement of the other sample end against a coun- 
terelectrode was monitored with the help of a capac- 
itance bridge. We probed, accordingly, the relaxation 
of Young's modulus. The sample preparation, the ap- 
paratus, the experimental technique and the data eval- 
uation were similar to a previous study [9]. An im- 
provement in comparison to this study was that the 
sample was deflected under constant stress conditions 
which simplified the quantitative data analysis. We 
mention finally that O losses of our samples, which 
were in vacuum in the course of the measurements, 
did not occur because of the low O diffusivity at and 
below 150 °C [9, 10], and that all our measurements 
demonstrated a completely reversible relaxation be- 
havior. 
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Figure 3 shows the deflection and, therefore, the 
strain of the sample with x=  6.41 vs. time during mea- 
surement at 120 °C. Between times t~ and t2 (upper 
abscissa), the sample was deflected by a constant force, 
yielding the strain E= E ~e>+ E ~) where ~°) and E <~) are 
the elastic and the anelastic strain, respectively. After 
the force was removed at t2, the remaining E ~a) relaxed 
slowly towards zero. 
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Fig. 3. The strain E = E(') + ~") of the sample with x = 6.41 during 
measurement  at 120 °C in a plot vs. time t. The deflecting force 
was applied between tl and t2. The insert shows ~ during the 
first five seconds after t2. For more details, see text. 
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Fig. 4. The ratio de-(~) after time t2 in a plot vs. the logarithm 
of time t, measured at 120 °C on the sample with x=6.41  after 
the deflecting force was applied for four different time periods 
t2-t t .  The figure shows also the values of t2- t l .  

Figure 4 presents the results of four measurements, 
performed at 120 °C on the sample with x=6.41. The 
figure shows the anelastic strain e= e (a) after t2 in a 
plot vs. the logarithm of time, as determined after four 
different time periods t2 - t l  for the application of the 
deflecting force. It can be seen that the values of e(a) 
increase with increasing t2-t l ,  thus demonstrating that 
the time periods t2 - tl do not greatly exceed the involved 
relaxation times. 

It is readily found from Fig. 4 that the time dependence 
of the anelastic relaxation e ~") cannot be described by 
a single relaxation time. For that reason, we considered 
for our data a large number of relaxation modes i, 
characterized by relaxation times ~'i, partial relaxation 
strengths ai and a total relaxation strength A= Ei Si. 
We assumed (i) a common pre-exponential factor ~o 
for the relaxation times ri=%exp(Hflk~T) and (ii) 
partial relaxation strengths 8i varying with Hi according 
to a gaussian distribution centered at Ho and exhibiting 
a standard deviation or,. We made fits to our data 
under these assumptions, accounting explicitly for the 
strain relaxation betwee.n tl and t2. For a given sample 
and temperature, all the measurements were simul- 
taneously analyzed in a single-fit procedure, where the 
relevant fit parameters were the total relaxation strength 
A, the central relaxation time r=roexp(Ho/kBT) and 
the standard deviation an. The solid lines in Fig. 4 
represent the fit curves to the data there, and it can 
be seen that these curves provide a fair description of 
the data. 

Our fits to the 120 °C data yielded central relaxation 
times r, relaxation strengths A and standard deviations 
an as indicated in Table 1. The table shows also the 
activation enthalpies Ho resulting from our measure- 
ments at 100 and 150 °C, together with the corresponding 
results for a previously investigated sample (x---6.45) 
[9]. 

The results in Table 1 agree with literature values 
[9, 10, 20-23] if we account for the considerable scatter 
of the data. The large relaxation strengths of the samples 
with x-6 .41  and 6.45 are, in fact, expected in the 
neighborhood of the phase transformation. However, 
probably the most important result of the present study 
is the correlation between the central relaxation time 
r and the relaxation strength A of the samples in Table 

TABLE 1. Results for A, r, ~rH and H0 obtained from the two samples of this study and from the sample of a previous investigation 
[9] 

O concentration x A I- (s) trn (eV) Ho (eV) 
and experiment at 120 °C at 120 *C at 120 °C 

6.29 (this study) 0.06 + 0.01 3 + 0.5 0.06 + 0.01 1.1 + 0.3 
6.41 (this study) 0.49 + 0.07 98 + 15 0.10 + 0.01 1.25 + 0.3 
6.45 [9] 0.75 +0.15 700+70  0.07+0.01 ~ 1.0 
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1, ev idenced  by the  fact  tha t  a l a rger  A also impl ies  
a l a rge r  ~. Acco rd ing  to our  d iscuss ion in Sect ion  2 

( and  to  Fig.  2), such a co r re l a t ion  is prec ise ly  wha t  is 
p r e d i c t e d  in the  n e i g h b o r h o o d  of  the  t e t rago-  
n a l - o r t h o r h o m b i c  phase  t r ans fo rma t ion .  T h e  p re sen t  
resul t s  for A and  ~', and  the  co r re l a t ion  b e t w e e n  these  
quant i t ies ,  demons t r a t e s ,  t he re fo re ,  convincingly the  
inf luence  o f  the  fe r roe las t ic  phase  t r ans fo rma t ion  in 
YBaECu3Ox on the anelas t ic  r e laxa t ion  behavior .  
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